Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062768

RESUMO

A systematic study over different treatment conditions, including hydrothermal and acid-thermal, was successfully carried out to determine the most suitable conditions to enhance the textural properties and surface chemical composition of natural dolomite. The reconstruction of dolomite after various treatments enhanced the surface area by 4-5 times and diminished the pore diameter between 70% and 81% compared to the untreated parent dolomite. The Rietveld analysis of the X-ray diffraction (XRD) patterns revealed changes in the crystalline compositions after each treatment. When the treated dolomite was used as a catalyst to produce glycerol carbonate via a transesterification reaction of glycerol and dimethyl carbonate, the crystalline Ca(OH)2 concentration of the modified dolomite and the apparent glycerol carbonate formation rate (rgc) are well-correlated. The results suggest that an increase of the crystalline Ca(OH)2 concentration could be related with surface basicity at the weak and moderate strength sites that may lead to an increase in catalytic activity. The hydrothermal treated dolomite showed a selectivity of glycerol carbonate greater than 99% and rgc value 3.42 mmol/min·gcat, which was higher than that achieved on other samples. This study could aid to the proper selection of dolomite treatment for the desired crystalline composition, depending on the applications of this highly available mineral.

2.
Microsyst Nanoeng ; 6: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567624

RESUMO

Glassy carbon nanofibers (GCNFs) are considered promising candidates for the fabrication of nanosensors for biosensing applications. Importantly, in part due to their great stability, carbon electrodes with sub-10 nm nanogaps represent an attractive platform for probing the electrical characteristics of molecules. The fabrication of sub-10 nm nanogap electrodes in these GCNFs, which is achieved by electrically stimulating the fibers until they break, was previously found to require fibers shorter than 2 µm; however, this process is generally hampered by the limitations inherent to photolithographic methods. In this work, to obtain nanogaps on the order of 10 nm without the need for sub-2 µm GCNFs, we employed a fabrication strategy in which the fibers were gradually thinned down by continuously monitoring the changes in the electrical resistance of the fiber and adjusting the applied voltage accordingly. To further reduce the nanogap size, we studied the mechanism behind the thinning and eventual breakdown of the suspended GCNFs by controlling the environmental conditions and pressure during the experiment. Following this approach, which includes performing the experiments in a high-vacuum chamber after a series of carbon dioxide (CO2) purging cycles, nanogaps on the order of 10 nm were produced in suspended GCNFs 52 µm in length, much longer than the ~2 µm GCNFs needed to produce such small gaps without the procedure employed in this work. Furthermore, the electrodes showed no apparent change in their shape or nanogap width after being stored at room temperature for approximately 6 months.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...